onsdag 2. november 2011
Artikkelseminar på seksjonen
Vår utmerkede seksjonsleder har dratt igang en ny tradisjon på matematikkseksjonen: til hvert seksjonsmøte skal vi ha lest en eller to artikler som vi diskuterer når de mer prosaiske sakene er unnagjort. Utplukkingen av artikler går på omgang. Tiltaket er med på å utvikle en felles referanseramme (eller -basis) på seksjonen.
I dag diskuterte vi to artikler som jeg hadde plukket ut. Den ene artikkelen var av Luis Radford og var på en måte en fortsettelse av en artikkel fra forrige møte. Den handler om tidlig algebratenkning, basert på et prosjekt hvor man har fulgt barn gjennom tre år. Etter å ha hørt Radford noen ganger på konferanser uten å forstå all verden, ble jeg nysgjerrig da Vigdis Flottorp viste til ham i en Tangentenartikkel nylig.
Artikkelen er:
Radford, L. (2011). Embodiment, perception and symbols in the development of early algebraic thinking. In Ubuz, B. (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 17-24). Ankara, Turkey: PME.
Artikkelen er interessant av flere grunner. Jeg er fascinert av at man vil studere elevers algebraiske tenkning og insisterer på å gjøre det med masse videokameraer. Mange ville jo nøyd seg med lydopptak. I artikkelen ser vi godt hvorfor videokameraene er nyttige - elevene kommuniserer ikke-verbalt blant annet ved hjelp av gester. Vi ser også hvordan elevens forståelse av figurtall beveger seg mot å se det romlige/geometriske og det tallmessige i sammenheng.
Den andre artikkelen handler om matematikklærerutdanneres matematikkunnskap - og som teoretisk bakgrunn har den blant annet Ball som jo mange på seksjonen er glad i. Artikkelen er cirka en måned gammel og er relevant siden den jo faktisk handler om "oss".
Artikkelen er:
Zazkis, R. & Zazkis, D. (2011). The significance of mathematical knowledge in teaching elementary methods courses: Perspectives of mathematics teacher educators. Educational Studies in Mathematics, 76(3), 247-263.
Det var denne artikkelen som skapte mest diskusjon. Den er interessant fordi den starter på den samme jobben angående lærerutdanneres matematikkunnskap som Ball og mange med henne har gjort med lærerkunnskapen: å prøve å dreie diskusjonen over fra en unyansert telling av matematikkvekttall til å diskutere hva matematikkunnskapen kan bidra med inn i lærerhverdagen. I artikkelen er fem matematikklærerutdannere intervjuet, og de kommer med fem ulike argumentasjonsrekker og eksemplifiseringer av at deres matematikkunnskap bidrar til undervisningen. Et eksempel er en som mener at bakgrunnen fra gruppeteori gjør at læreren kan svare på et konkret spørsmål som dukket opp i undervisningen, et annet eksempel er hvordan matematikkhistoriekunnskaper bidrar til å se matematikkfaget i et annet perspektiv.
Men artikkelen har også mange konkrete eksempler som er interessante å se på, og som vi også brukte litt tid på å diskutere.
For oss lærerutdannere kan det knapt finnes noe mer relevant spørsmål enn det spørsmålet denne artikkelen reiser: Hvilke deler av vår bakgrunn og våre kunnskaper er det som bidrar til at vi (forhåpentligvis) er gode matematikklærerutdannere? Forstår vi mer av dette spørsmålet, forstår vi vel samtidig en god del mer om hva våre studenter bør kunne for å bli gode matematikklærere.
Til tross for at det i en travel hverdag er vanskelig å få tid til artikkellesing - spesielt av artikler som ikke er direkte relevante for artikler vi selv er i ferd med å skrive - så håper jeg at artikkelseminarene fortsetter...
Abonner på:
Legg inn kommentarer (Atom)
Ingen kommentarer:
Legg inn en kommentar